查看: 867|回复: 1
收起左侧

Ensuring Safety for Liquefied Hydrogen Carriers

[复制链接]
发表于 2020-11-2 10:51 | 显示全部楼层 |阅读模式
Having been already been applied to a ship construction project, ClassNK guidelines to support liquefied hydrogen transportation provide a significant roadmap towards a ‘hydrogen society’

Launching ceremony of SUISO FRONTIER.jpg
Courtesy of Kawasaki Heavy Industries, Ltd.

As a zero-emission fuel with availability around the world, hydrogen has the potential to transform modern society. Harnessing fuel-cells as the power source for mobility, household, and industry as well as fueling gas turbines are the most visible of society’s growing initiatives to exploit hydrogen energy, but considerable work remains before a ‘hydrogen society’ can be supported on an industrial scale. One key component will be the ability for ships to carry large amounts of hydrogen worldwide.

From the viewpoint of transportation efficiency, practical options include the carriage of liquefied hydrogen in bulk, the organic chemical hydride method and deriving hydrogen from transported ammonia. In the latter two cases, transportation is possible using conventional chemical tankers or liquefied gas carriers according to IGC Code or other established safety requirements. The existing statutory framework has also been under development to cover the carriage of liquefied hydrogen, which is considered to be the most efficient method.

As liquefied hydrogen must be kept at temperatures below -253°C to maintain its liquid state under atmospheric pressure, however, it presents an even tougher handling and storage challenge at sea than LNG.

ClassNK responded to the expectations for liquefied hydrogen transportation provided in 2017, publishing a comprehensive set of “Guidelines for Liquefied Hydrogen Carriers”. The guidelines took in the provisions of IMO’s Interim Recommendations for Carriage of Liquefied Hydrogen in Bulk, adopted by the MSC in 2016, and prescribed each item as a more specific requirement based on scenarios for possible accidents to ensure the safety of liquefied hydrogen transportation.
ClassNK Guidelines top.jpg

The IMO Interim Recommendation was developed primarily based on a comparison of physical properties of Methane as main components of LNG and liquefied hydrogen. Both are cryogenic and nontoxic, and both generate flammable high-pressure gas.


Comparison of Physical Properties of Hydrogen and Methane1,2
20201102104933.jpg

Comparing and examining the physical properties of hydrogen and methane, the key hazards related to liquefied hydrogen can be identified as

(1) Low ignition energy,

(2) Wider flammability range,

(3) Low flame visibility during fires,

(4) High burning velocity, which may lead to detonations with shockwaves,

(5) Condensation (liquefaction) and coagulation (solidification) of gas constituting inert gas and air, which may lead to the formation of a low-temperature atmosphere with a high concentration of oxygen commonly known as a strong combustion aid if mixed with flammable gas such as hydrogen and also could result in clogging of pipes when solidified

(6) High permeability,

(7) Low viscosity,

(8) Hydrogen embrittlement of materials for tank, piping and process equipment including welds.

In view of those hazards, ClassNK’s guidelines have provided special requirements for the following 19 areas:

(1)Materials, welding of cargo tank, cargo process piping, pressure vessels and equipment

(2)Thermal insulation and its materials of cargo tank, cargo process piping, pressure vessels and equipment

(3)Vacuum insulation system for cargo containment system

(4)Vacuum insulation system for cargo process piping, pressure vessels and equipment

(5)Design, construction and testing of cargo tanks

(6)Design, arrangement of cargo process piping, pressure vessels and equipment

(7)Construction and testing of cargo process piping, pressure vessels and equipment

(8)Pressure relief valves for cargo tanks

(9)Vent systems for cargo containment

(10)Cargo pressure / temperature control

(11)Atmosphere control

(12)Ventilation

(13)Temperature, gas concentration measurement and hydrogen gas detection, fire detection

(14)Measures against hydrogen fire

(15)Personnel protection

(16)Filling limits for cargo tanks

(17)Operational procedures and operation manual

(18)Risk assessment

(19)In-service survey plans

For a risk assessment to be conducted in an exhaustive manner for the design specifications of an individual ship carrying liquefied hydrogen cargo, it must consider risks to persons on board, the environment and the structural strength/integrity of the ship, with adequate counterm

回复

使用道具 举报

龙船学院
发表于 2020-11-7 19:37 来自手机 | 显示全部楼层
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|关于我们(mail@imarine.cn)|免责条款|沪公网安备 31011502001506号|龙de船人 ( 沪ICP备11048848号-1 )

GMT+8, 2020-11-27 04:38

Powered by Imarine

Copyright © 2006-2020, 龙de船人

快速回复 返回顶部 返回列表